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We study the induced measure obtained from a 1-step Markov measure, sup-
ported by a topological Markov chain, after the mapping of the original alpha-
bet onto another one. We give sufficient conditions for the induced measure to
be a Gibbs measure (in the sense of Bowen) when the factor system is again a
topological Markov chain. This amounts to constructing, when it does exist, the
induced potential and proving its Hölder continuity. This is achieved through a
matrix method. We provide examples and counterexamples to illustrate our
results.
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1. INTRODUCTION

This paper is concerned with the nature of the ‘‘projection’’ of a Markov
measure, supported by a topological Markov chain (TMC for short),
obtained by the action of a factor map mapping the original TMC onto
another one. (We recall the definition of a TMC at the beginning of
Section 2.) The resulting measure is not expected to be a Markov measure
of any order, that is, the resulting process has not a finite memory. The
simplest class of measures with infinite memory one could expect is the
class of Bowen–Gibbs measures (BGM’s for short).

This problem arises naturally in the coding under restrictions of the
kind imposed by forbidding the use of certain blocks. A factor map (called
a code in that context) represents a channel with deterministic noise, that
is, one which looses information in a predictable way. (16) Here the input



messages are governed by statistics described by a Markov chain and one
wants to determine statistics of output messages.

This problem is also related to the so-called hidden Markov model (19)

in Statistics: this model consists in assuming that the observed data are the
image of a finite-state Markov chain, this image being obtained by ‘‘lumping’’
some of the states of the state space. Our problem can be phrased by saying
that we wish to determine whether a hidden Markov process is distributed
according to a BGM.

A third situation where our problem naturally arises is the following.
Suppose that a chaotic time series {xn}n \ 0 is generated by a deterministic
process, a dynamical system, and assume for the sake of definiteness that it
is a map on the interval. This means that xn+1=f(xn). In general one does
not have access to f and only observes a symbolic sequence instead of the
original orbit. This is because the system can only be observed through a
partition of the values of the xn’s that corresponds to the finite precision of
the measurement or the computer. A natural question is to determine the
invariant measure from this single symbolic sequence, even in the ideal case
when the time series would be of infinite length. This problem has been for
instance studied in ref. 4 where it was assumed that the observed symbolic
sequence is generating by a Bowen–Gibbs measure. A particular class of
maps f is the one of piecewise linear Markov maps. When one consider the
coding of such maps via the partition given by the intervals corresponding
to each branch, the resulting symbolic dynamics is given by a TMC with a
state space with k symbols and the invariant measure is a (1-step) Markov
measure, k being the number of branches. (9) A basic question is the follow-
ing: if one observes the dynamical system through a lumping of the parti-
tion just introduced, supposing that two atoms of the partition cannot be
distinguished, say, then what is the resulting invariant measure describing
the time-series ?

A last incarnation of our problem is a one-dimensional lattice gas
described by a Markov measure. What happens if, say, two spin values
cannot be distinguished ? What we call a projection un the present article is
in that context an example of a single site renormalization group trans-
formation. Non Gibbsianess is not expected since there are no phase tran-
sitions in one dimensional finite range systems. Some useful references for
the reader interested in classical models of statistical mechanics are refs. 5,
12, 14, and 15. Of course, while we restrict ourselves to the one-dimen-
sional setting, the problem of transforming Gibbs measures (by many other
types of procedures) can be set in the much more general context of
measures on d-dimensional lattices, see ref. 6 for the most recent review.

Description of the paper. Section 2 is devoted to the set-up of our
article. We also give the ansatz for the induced potential based on a simple
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property of a Gibbs measure. It turns out that the point is to control an
infinite product of non-square matrices.

In Section 3 we state our main result, namely some sufficient condi-
tions to get a BGM from the original 1-step Markov measure after the
projection of its state space. We emphasize that the presence of forbidden
blocks in the original system causes the main difficulty. The projection
process induces some strong topological correlations in the resulting system
and the existence of the ansatz potential is not obvious at all.

The main result is proved in Section 4. In a first subsection we define a
suitable projective metric which is the central tool to control the infinite
products of matrices appearing in the ansatz of the induced potential. In
the following subsection we state a theorem giving some sufficient condi-
tions on a point in the projected TMC in order to have a well-defined
potential at that point. In the last subsection we show how to extend the
preceding theorem to the whole projected TMC and we prove the Hölder
continuity of the induced potential. Therefore, under suitable conditions,
the projection of the initial Markov measure is a BGM.

Section 5 provides a typical example illustrating our main result. Then
we also consider the case when the original TMC is a full shift, that is when
no blocks are forbidden. It turns out that the projected measure is always a
BGM, generically with an infinite range potential (in very special cases the
potential can be of finite range). Notice that in the absence of forbidden
blocks our problem is considerably simplified. We also present an example
showing that one of the two hypothesis needed to establish our main result
is not just technical. Indeed in that example the induced potential is not
defined at some point (the infinite product mentioned above does not con-
verge). This also illustrates the non-trivial effect that the presence of for-
bidden blocks in the original system may have. Then we give a formula of
the induced potential, when it is well-defined, at periodic points. This
follows from the classical Perron–Frobenius theorem since we have for
such points to perform products of positive square matrices.

In Section 6 we give some links between our paper and some related
works both in our context and in other settings. We also address some
natural issues raised by our main result and the counterexamples.

A last section contains the proof of some auxiliary lemmas.

2. SET-UP AND ANSATZ FOR THE INDUCED POTENTIAL

2.1. Set-Up

Let (AM, s) be a TMC where A stands for the (finite) alphabet, M for
the incidence matrix and s denotes the shift map. This means that M is
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a 0 − 1-matrix selecting a subset of all possible infinite sequences a=
a(0) a(1) · · · drawn from the alphabet A:

AM :={a ¥ AN: M(a(i), a(i+1))=1 -i ¥ N} .

This subset is closed under the action of the shift transformation s, that is,
sAM=AM, where s is defined as follows: (sa)(i) :=a(i+1) for any
a ¥ AM. (TMC’s are nothing but subshifts of finite type with forbidden
block of length two.) Let us recall that a TMC can be viewed as the set of
infinite paths on the directed graph (digraph) with vertex set equal to the
alphabet and arrows corresponding to allowed transitions between symbols
of the alphabet according to the incidence matrix. (10) (We will use this
representation in Section 5.)

Suppose (AM, s) is topologically mixing or, equivalently, that M is a
primitive matrix. By this we mean that there is a power m0 \ 1 such that the
matrix Mm0 has only strictly positive entries. (Notice that this property is
equivalent to assume that M is irreducible and aperiodic. (20)) Consider a
1-step Markov measure m: B(AM) Q [0, 1], which is s-invariant and mixing
(B(AM) denotes the Borel sigma-algebra of AM generated by cylinder sets).
This measure is a BGM associated to a potential f :AM Q R which is con-
stant in each cylinder of length two. This potential can be thought as a
2-symbols function, that is a potential of range two. Using the same nota
tion for both the potential and the 2-symbols function, we have
f(a)=f(a(0:1)), where a(0:1) denotes the 2-block a(0) a(1). In general,
given a ¥ AM and 0 [ i < j, the block a(i) a(i+1) · · · a(j) will be denoted by
a(i :j).

The potential generating m can always be chosen such that

m[a(0:n)]=exp 1 C
n − 1

i=0
f(a(i : i+1))2 m[a(n)] , (1)

where [a(0:n)] is the cylinder of length (n+1) containing a, i.e.,
[a(0:n)] :={aŒ ¥ AM :aŒ(i)=a(i), 0 [ i [ n}. (In this case f must be strictly
negative.)

Bowen–Gibbs Inequality. Let us recall the following basic charac-
terization of a general BGM. Let W be a TMC and k: W Q R. Then it is
known (2) that there is a unique s-invariant measure n such that for any
n ¥ N0 and any admissible b

exp(−K) [
n[b(0:n)]

exp(;n
j=0 k(s j(b)))

[ exp(K). (2)
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where K > 0 is a constant independent of n and b. We implicitely put the
topological pressure of k equal to zero, which is always possible. (18)

From now on, we always choose inside the cohomological class of
potentials determining any BGM the normalized one, so, in particular, the
one of zero pressure. (18)

Let p: A Q B be a map onto another alphabet B. In the sequel we
always assume that #A > #B > 1, that is p is a projection. This map defines
a factor system (Bp, s), with

Bp :={b ¥ BN :,a ¥ AM such that pa(i)=b(i), i ¥ N0}. (3)

(N0=N 2 {0}. We also denote by p the map from AM onto Bp defined in
an obvious way.)

It is readily checked that if Bp is infinite then it has to be uncountable.
Notice that (Bp, s) is in general a topologically mixing sofic subshift. (10)

A sofic subshift cannot be described by a list of finite forbidden blocks.
Let us introduce the following distance on Bp

d(b, bŒ) :=˛exp 1 −
min{j: b(j) ] bŒ(j)}

2(#B+1)
2 if b ] bŒ

0 if b=bŒ.
(4)

(The constant dividing the min in this definition is for the sake of later
convenience.)

The problem concerning us is to elucidate the nature of the measure
n: B(Bp) Q [0, 1] such that

n[b(0:n)] :=m{a ¥ AM :p(a(i))=b(i), -0 [ i [ n}, (5)

which is the image (or projection) of the measure m by p, i.e., n :=m p p−1.
Some general properties of the original measure are preserved under

the action of factor maps. If m is ergodic so is the measure n p p−1. The
same holds for the mixing property. (See, e.g., ref. 9.)

For each b ¥ B let Eb :=p−1(b) … A. For each bbŒ ¥ B × B define the
rectangular matrix MbbŒ: Eb × EbŒ Q [0, 1] by

MbbŒ(a, aŒ)=exp[f(a, aŒ)] M(a, aŒ) (6)

for all aaŒ ¥ Eb × EbŒ.
Finally, for each b ¥ B let us define the column vector

mb: Eb Q [0, 1] such that mb(a)=m[a], for any a ¥ Eb . (7)

Projection of Markov Measures May Be Gibbsian 1249



A straightforward computation shows that n: B(Bp) Q [0, 1] satisfies

n[b0b1 · · · bn]=1† 1D
n − 1

i=0
Mbibi+1

2 mbn
(8)

for any Bp-admissible cylinder [b0b1 · · · bn]. Here the symbol 1 stands for
the all-ones column vector of the adequate dimension (whereas 1† is the
corresponding all-ones row vector).

2.2. Ansatz for the Induced Potential

In the following basic lemmas W denotes an arbitrary TMC.

Lemma 1. Suppose that n: B(W) Q [0, 1] is a BGM. Then it is
associated to the normalized Hölder continuous potential k: W Q R such
that

k(b)= lim
n Q .

log 1n[b(0:n)]
n[b(1:n)]

2 (9)

for any b ¥ W.

We refer to ref. 18 for the straightforward proof of this result. We
remark that kn(b) :=log(n[b(0:n)]/n[b(1:n)]) defines for each n \ 1 a
function which is constant in each cylinder of length n+1. This function is
the Hölder continuous potential of a certain (unique) BGM nn, say, which
is nothing but the n-step Markov approximation of the measure n.

Let us emphasize that Lemma 1 says that necessarily the potential of a
BGM is given by (9). This is far from sufficient since this lemma holds for
any g-measure. A g-measure is an equilibrium state (which is in general not
unique) associated to a suitably normalized stictly positive potential which
is only continuous. We refer the reader to ref. 17 and references therein for
details.

Ansatz for the Induced Potential. Coming back to our problem,
we see that Lemma 1 gives the following ansatz for the induced potential:
for each b ¥ Bp, set

k(b)= lim
n Q .

log 1n[b(0:n)]
n[b(1:n)]

2

= lim
n Q .

log 11†(<n − 1
i=0 Mb(i : i+1)) mb(n)

1†(<n − 1
i=1 Mb(i : i+1)) mb(n)

2 , (10)
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where the second equality is obtained after the straightforward substitu-
tions according to formula (8). We see that this ansatz potential is given by
an infinite product of non square matrices whose convergence and regularity
properties as a function of b seem to be not trivial at all. The key tool to
control this infinite product will be the use of a suitable projective metric.

In the next section we state (and prove in Section 4) that, under some
sufficient conditions, the measure n defined by (5) is the BGM associated to
the above ansatz potential. This means that we will show that k(b) is
correctly defined for every b ¥ Bp and, moreover, that it is a Hölder
continuous function.

3. MAIN RESULT: WHEN A MARKOV MEASURE IS MAPPED TO A

BGM

The next theorem gives sufficient conditions ensuring that the function
b W k(b), defined by (10), is well defined and Hölder continuous in the
whole projected TMC, Bp. Before stating the theorem, we need some
preliminary definitions.

Definition 1 (Row Allowable Matrix). Let EŒ and E be finite
alphabets, and T: EŒ × E Q [0, .) be a rectangular, non-negative matrix on
these alphabets. This matrix is said to be row allowable if for each eŒ ¥ EŒ

there exists e ¥ E such that T(eŒ, e) > 0.

This definition is inspired by a very similar one given in ref. 20.
First, we restrict the type of factor maps or projections because we

want to get a TMC from the original one. Otherwise, as mentioned above,
one would get a sofic subshift in which ‘‘topological correlations’’ are
generally ‘‘non-local.’’

Definition 2 (Topological Markov Factor Map). The factor map
p: AM Q Bp is said to be a topological Markov map if the factor subshift Bp

is a TMC.

For each b ¥ B recall that

Eb :={a ¥ A:p(a)=b}.

For each Bp-admissible block bbŒ, let MbbŒ :Eb × EbŒ Q {0, 1} be such
that

MbbŒ(a, aŒ)=˛1 if M(a, aŒ)=1, p(a)=b and p(aŒ)=bŒ,
0 otherwise.
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We need a further restriction on the factor maps we will be able to
handle.

Definition 3 (Full Row Allowable Factor Map). The factor map
p: AM Q Bp is said to be full row allowable if for each Bp-admissible block
bbŒ, the corresponding transition submatrix MbbŒ is row allowable.

Notice that MbbŒ is a submatrix of the transition matrix M, which is
compatible with the non-negative matrix MbbŒ defined by (6). It is clear that
the definition of a full row allowable factor map does not depend on the
potential f defining the Markov measure on (AM, s). It is a purely
topological notion.

Denote by Perp(Bp) the set of admissible periodic points with period
p \ 1. Notice that there is at least one p with 1 [ p [ #B such that
Perp(Bp) ] ”. This is a basic property of a TMC. (10)

We can now state the main theorem of the paper.

Main Theorem. Suppose that (AM, s) is a TMC supporting a 1-step
Markov measure m. Let p :A Q B a map from A onto another alphabet B
and Bp the corresponding factor space. Assume that #A > #B > 1 and p

satisfies the following conditions:

(H1) is full row allowable,

(H2) for each b ¥ Perp(Bp), with 1 [ p [ #B, the matrix <p − 1
i=0 Mb(i : i+1)

is positive.

Under these hypothesis, the function b W k(b) defined by (10) is well-
defined and Hölder continuous on the whole set Bp which is a TMC. This
amounts to saying that the projected measure n=m p p−1 (remember
formula (5)) is the (unique) BGM of the potential k, that is, it satisfies the
Bowen–Gibbs inequality (2).

In Section 5 we provide typical examples of factor maps satisfying the
hypotheses of this theorem. Moreover we give a formula of the induced
potential at periodic points. It is natural to ask what happens in the case
when AM is a full shift. We shall show in that section that the projected
measure is always a BGM because the hypotheses of our theorem are tri-
vially fulfilled in that case. A more interesting question is whether the cor-
responding potential can be of finite range (which gives a Markov measure
with a certain memory). A typical example will show this is possible but
‘‘non generic.’’

It is worth to point out that the presence of forbidden blocks makes
the induced potential of infinite range. The reason is that a potential is of
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finite range if and only if the sequence in formula (9) becomes constant
after some n0, which means that the potential is of range n0+1 (see the
lines just after Lemma 1). The presence of forbidden blocks makes unlikely
this phenomenon to occur (see formula (10)).

An example built in Section 5 will show that the hypothesis H2 is
unavoidable since we will exhibit a point such that the induced potential
does not exist.

Remark 1. We have only considered the case when the original
system is a TMC, instead of a more general subshift of finite type (SFT),
and the factor map is only a 1-block factor map, instead of, say, a 2-block
factor map. A SFT is a subshift for which is given a list of forbidden blocks
whose length is two in the case of TMC’s. From the mathematical point of
view there is no loss of generality since any SFT can be recoded as a TMC
and a finite-block factor map as a 1-block factor map. We are not able
to handle the case of a generic sofic subshift. We refer to ref. 10 for
background informations on symbolic dynamics and coding.

4. PROOF OF THE MAIN THEOREM

This section is divided into three subsections. We first introduce the
projective metric we need to control the infinite product of non-square
matrices that appears in (10). This is the crucial point in our approach.
Then we give sufficient conditions for a b ¥ Bp such that k(b) defined in
(10) does exist (Theorem 1). Then we prove our main theorem.

4.1. Contractivity of Positive Non-Square Matrices over Simplices

Let E … A be non-empty, and consider the simplex

DE :={x: E Q (0, 1): |x|1=1} , (11)

where |x|1 :=1†x=; e ¥ E x(e).
The projective metric in this simplex is the function dE :DE × DE Q

[0, .) such that

dE(x, y) :=log 1maxe ¥ E (x(e)/y(e))
mine ¥ E (x(e)/y(e))

2 · (12)

The projective metric makes (DE, dE) a complete metric space. Of
course DE is not complete with respect to the Euclidean, or any other ap

metric.
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Let us associate to any matrix T: EŒ × E Q [0, .) the mapping
FT: DE Q DEŒ, such that

FT(x) :=
Tx

|Tx|1
· (13)

Notice that this mapping is well defined for any row allowable matrix.

Lemma 2. Let E, EŒ … A be non-empty and T: EŒ × E Q [0, .) be
row allowable, then

dEŒ(FT(x), FT(y)) [ dE(x, y), (14)

for all x, y ¥ DE.

Proof. We follow the standard procedure one can find in ref. 20.
For y ¥ DEŒ let Py: EŒ × E Q [0, 1] be such that

Py(eŒ, e) :=
T(eŒ, e) y(e)

(Ty)(eŒ)
·

for any (eŒ, e) ¥ EŒ × E.
Then, for all eŒ ¥ EŒ we have

(FT(x))(eŒ)
(FT(y))(eŒ)

=
|Ty|1
|Tx|1

× C
e ¥ E

1Py(eŒ, e) x(e)
y(e)

2=1Py
1x

y
22 (eŒ),

where (x
y) denotes the vector of quotients y(e)

x(e) ¥ (0, .)E.
Since Py is a stochastic matrix, then

max
eŒ ¥ EŒ

(Tx)(eŒ)
(Ty)(eŒ)

[ max
e ¥ E

x(e)
y(e)

,

min
eŒ ¥ EŒ

(Tx)(eŒ)
(Ty)(eŒ)

\ min
e ¥ E

x(e)
y(e)

,

which implies that dEŒ(FT(x), FT(y)) [ dE(x, y). L

According to this lemma, a non-negative matrix T defines a ‘‘non-
expanding’’ map: FT: DE Q DEŒ for which one defines a ‘‘contraction coef-
ficient.’’
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Definition 4. Let : FT :DE Q DEŒ be the mapping defined above
(formula (13)). Then this mapping is ‘‘contractive’’ with a ‘‘contraction
coefficient’’ equal to

y(T) := sup
x, y ¥ DE

dEŒ(FT(x), FT(y))
dE(x, y)

· (15)

According to Lemma 2, this coefficient is never larger than one and
under certain conditions it is strictly smaller. In fact one can derive an
expression for the contraction coefficient.

Lemma 3 (Contraction Coefficient). For T: EŒ × E Q [0, .) as
above, the contration coefficient (15) is equal to

y(T)=
1 − `F(T)

1+`F(T)

with

F(T)=˛ min
e, f ¥ EeŒ, fŒ ¥ EŒ

T(eŒ, e) T(fŒ, f )
T(eŒ, f ) T(fŒ, e)

if T > 0

0 if T \ 0.

We do not give the proof of this result since it can be deduced
straightforwardly mutatis mutandis from [ref. 20, Section 3.4] (therein this
formula is deduced in the case of square matrices). Let us stress that
effective contraction is possible only if the matrix is strictly positive.

4.2. Existence of the Induced Potential at Some Particular Points

The aim of this section is to determine sufficient conditions on b under
which the limit (10) does exist.

Before investigating the existence of this limit in the whole symbolic
space Bp, we shall consider conditions that ensure its existence for particu-
lar choices of b ¥ Bp. But before we need to introduce some shorthand
notations in order to avoid cumbersome formulas.

Notations. For b ¥ Bp and for any integers 0 [ m < n, let

Mb(m:n) := D
n − 1

i=m
Mb(i : i+1) · (16)
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Notice that, since mb(n) > 0 (remember (7)) and Mb(m:n) ] 0, then
Mb(m:n)mb(n) ] 0.

We will assume that Mb(m:n) is a row allowable matrix (see Definition 1).
In this case we have Mb(m:n)mb(n) > 0 and the transformation FMb(m:n)

defined
by the matrix Mb(m:n) will be simply denoted by Fb(m:n).

Let us write xb(m:n) :=Fb(m:n)(m̂b(n)) for the image by Fb(m:n) of the nor-
malized vector m̂b(n) :=mb(n)/|mb(n) |1. For Mb(m:n) row allowable, this vector
lies in the simplex DEb(m)

(i. e., xb(m:n) > 0).
Let us denote by Db(m) the simplex DEb(m)

, and by db(n)(., .) the corre-
sponding projective distance dEb(n)

(., .).

With the notations just introduced we have

1†(<n − 1
i=0 Mb(i : i+1)) mb(n)

1†(<n − 1
i=1 Mb(i : i+1)) mb(n)

=
1†Mb(0:n)mb(n)

1†Mb(1:n)mb(n)

=1†Mb(0:1)Fb(1:n)(m̂b(n))=1†Mb(0:1)xb(1:n).

Therefore, proving that limit (10) exists amounts to proving that

k(b) := lim
n Q .

log(1†Mb(0:1)xb(1:n)) (17)

exists. In fact, under suitable conditions, xb(1:n) converges exponentially fast
to a certain vector, as n Q ..

Theorem 1. Let b ¥ Bp be such that:

(H1’) for each i \ 0, Mb(i : i+1) :Eb(i) × Eb(i+1) Q (0, .) is row allowable;

(H2’) there exists a bounded gap, strictly increasing sequence
a(0) < a(1) < · · · (i.e., 0 < a(k+1) − a(k) < s for all k ¥ N and some fixed
s \ 2), such that Mb(a(k):a(k+1)) > 0 for each k ¥ N0.

Under the above conditions, there exists a (normalized) vector xb(1:.) ¥ Db(1)

and constants h(b) ¥ (0, 1), C(b) > 0, such that

db(1)(xb(1:.), xb(1:n)) [ C(b) h(b)n
-n ¥ N. (18)

Moreover, the induced potential k at point b ¥ Bp exists and it satisfies

|k(b) − log(1†Mb(0:1)xb(1:n))| [ C(b) h(b)n
-n ¥ N. (19)

Proof of Theorem 1. Hypothesis H1 implies that each one of the
matrices Mb(m:n) is row allowable (a product of row allowable matrices
being a row allowable matrix). Therefore, the associated transformation
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Fb(m:n): Db(m) Q Db(n) is either an isometry or a contraction with respect to
the suitable projective metric.

Hypothesis H2 and Lemma 3 imply that Fb(a(k):a(k+1)) :Db(a(k+1)) Q

Db(a(k)) is a contraction for each k ¥ N0. Let us denote the contraction coef-
ficient of this transformation, y(Mb(a(k):a(k+1))), by y(b, k). (Recall the
definition of the contraction coefficient, Definition 4.)

Given n ¥ N, let k(n) :=max{k ¥ N0 :a(k+1) [ n}. For any nŒ > n one
has

db(1)(xb(1:n), xb(1, nŒ))=db(1)(Fb(1:n)(m̂b(n)), Fb(1:n)(xb(1, nŒ)))

[ 1D
k(n)

j=0
y(b, j)2× db(n)(m̂b(n), xb(n:nŒ)) · (20)

(Remember that m̂b(n) :=mb(n)/|mb(n) |1.)
The number of different positive matrices Mb(a(k):a(k+1)), which is at

most the number of different blocks b(a(i):a(i+1)) occurring in b, is finite.
Indeed, because of the bounded gap condition, this number is not larger
than (#B) s+1, where s is the maximum gap length between consecu-
tive elements in the sequence a(0) < a(1) < · · · . Thus, y(b) :=
sup{y(b, k):k ¥ N0} is a number strictly smaller than 1. Using the defini-
tion of k(n) and the bounded gap condition we deduce that k(n) \ n − a(0)

s − 1.
Hence we can write (20) as follows,

db(1)(xb(1:n), xb(1, nŒ)) [ (y(b))k(n) × db(n)(m̂b(n), xb(n:nŒ))

[ C1(b) × h(b)n × db(n)(m̂b(n), xb(n:nŒ)),

where h(b) :=y(b)1/s, and C1(b) :=1/y(b)2+a(0)/s.
Hence, xb(1:n) converges exponentially fast to a limit xb(1:.) ¥ Db(1),

provided that db(n)(m̂b(n), xb(n:nŒ)) is bounded with respect to n and nŒ > n. For
this note that

db(n)(m̂b(n), xb(n:nŒ)) [ db(n)(m̂b(n), xb(n:a(k(n)+2)))

+db(n)(xb(n:a(k(n)+2)), xb(n:a(k(n)+3)))

+db(n)(xb(n:a(k(n)+3)), xb(n:a(k(n)+4)))

x

+db(n)(xb(n:a(k(n)+p)), xb(n:nŒ)),

with p=max{k ¥ N0 :a(k(n)+p) [ nŒ}.
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Since each one of the transformations Fb(a(k):a(k)+1) is contractive with
coefficient y(b, k) [ y(b), one obtains

db(n)(m̂b(n), xb(n:nŒ)) [ db(n)(m̂b(n), xb(n:a(k(n)+2)))

+y(b) db(a(k(n)+2))(m̂b(a(k(n)+2)), xb(a(k(n)+2):a(k(n)+2)))

+y(b)2 db(a(k(n)+3))(m̂b(a(k(n)+3)), xb(a(k(n)+3):ma(k(n)+4)))

x

+y(b)p − 1 db(a(k(n)+p))(m̂b(a(k(n)+p)), xb(a(k(n)+p):nŒ)).

Finally, since

D :=max{db0
(m̂b0

, xb0b1 · · · bm
):1 [ m < s and b0b1 · · · bm is Bp-admissible}

is finite, one gets

db(1)(xb(1:n), xb(1:nŒ)) [ C(b) × h(b)n, -nŒ > n, (21)

where C(b) :=D × C1(b)
1 − y(b) · . We are done with the proof of Theorem 1.

Now turn to prove (19). By definition of the projective distance and
using inequality (21), we obtain

| log(1†Mb(0:1)xb(1:nŒ))
z

(f)

− log(1†Mb(0:1)xb(1:n))| [ db(1)(xb(1:n), xb(1, nŒ))

[ 1D × C1(b)
1 − y(b)

2× h(b)n

:=C(b) × h(b)n.

Hence, {log(1†Mb(0:1)xb(1:n))}.

n=1 is a Cauchy sequence in R converging
exponentially fast to k(b). Formula (19) follows by taking the limit nŒ Q .

in the term (*) in the previous chain of inequalities. The proof of Theorem 1
is now finished.

4.3. Proof of the Main Theorem

The proof of the Main theorem consists in obtaining a uniform
version of formula (19) in Theorem 1. Before doing this, we need a few
more lemmas.

First, we state the following lemma.

Lemma 4. Assume that Bp is a TMC. For each b ¥ Bp there exists a
sequence

0 [ m(0) < a(0) < m(1) < a(1) < · · ·
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such that for each k ¥ N, b(m(k))=b(a(k)) and k(#B+1) [ a(k) <
(k+1)(#B+1).

We need also the following lemma which is a partial converse to
Lemma 1:

Lemma 5. Let n: B(W) Q [0, 1] be a s-invariant measure. Suppose
that there is a summable sequence {c(n) ¥ R+}.

n=0, and a Hölder continu-
ous function k: W Q R such that

:k(b) − log 1n[b(0:n)]
n[b(1:n)]

2: [ c(n)

Then n is the BGM of the (normalized) potential k.

(See Section 7 for the proof.)
A last lemma that we need:

Lemma 6. If p: AM Q Bp is full row allowable, then it is a topologi-
cal Markov factor map, that is Bp is a (primitive) TMC.

(See Section 7 for the proof.)
It follows from a simple counterexample presented in Section 5, that

the converse to Lemma 6 is false.
We are ready for the proof of the main theorem:
For b ¥ Bp, let m(0) < a(0) < m(1) < a(1) < · · · be the sequence whose

existence is guaranted by Lemma 4. By hypothesis H1 and Lemma 6, we
deduce that there is a periodic point inside each one of the cylinders
[b(m(k):a(k))]. Indeed, since the block b(m(k):a(k)) is Bp-admissible and
(Bp, s) is a TMC, the concatenation b(m(k):a(k) − 1) b(m(k):a(k) − 1) · · ·
is Bp-admissible. Thus, by hypothesis H2 the matrices Mb(m(k):a(k)) are all
positive.

Now by H1 the matrices Mb(a(k − 1):m(k)) are row allowable. It is readily
checked that the product of a row allowable matrix by a positive matrix is
again a positive matrix, which implies that each one of the matrices
Mb(a(k):a(k+1)) is positive.

Therefore, for each b ¥ Bp, assumptions H1’ and H2’ of Theorem 1
hold, with a gap constant s=2(#B+1). Hence, the induced potential exists
in the whole space Bp.

Now let us establish the Hölder continuity of k.
Since there are finitely many periodic orbits of period less than or

equal to #B, then

y :=sup{y(Mb(0:p)):b ¥ Perp(Bp) for some 1 [ p [ #B} < 1.
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Following the proof of Theorem 1, set h :=y1/2(#B+1),

D :=max{db0
(m̂b0

, xb0b1 · · ·bm
):1 [ m < 2(#B+1) b0b1 · · · bm is Bp-admissible},

and C1 :=1/y3.
Inequality (21) holds uniformly in Bp, and we have

db(1)(xb(1:n), xb(1:.)) [ 1D × C1

1 − y
2× hn,

for all b ¥ Bp and all n ¥ N. Hence, formula (19) in Theorem 1 applies uni-
formly in b, implying that k(b) exists for all b and it is such that

:k(b) − log 1n[b(0:n)]
n[b(1:n)]

2 : [ 1D × C1

1 − y
2× hn. (22)

On the other hand, from inequality (4.3) it also follows that

db(1)(xbŒ(1:.), xb(1:.)) [ 12 × D × C1

1 − y
2× hn, (23)

for each b ¥ Bp, each n ¥ N, and all bŒ ¥ [b(0:n)].
Therefore, because of the definition of the projective distance, we

obtain

|k(bŒ) − k(b)| [ C × hn,

with C :=2 × D × C1/(1 − h), which implies that

varn k :=sup{|k(b) − k(bŒ)| :bj=b −

j, 0 [ j [ n} [ C × hn. (24)

According to the definition of the metric (4), this means the function k

is Hölder continuous with a Hölder exponent equal to log(1/y), i.e., the
logarithm of the inverse of the uniform contraction coefficient. In this way
we prove the existence of a Hölder continuous potential, which does satisfy
the hypotheses of Lemma 5 because of inequality (22), and the theorem
follows.

5. EXAMPLES, COUNTEREXAMPLES AND THE INDUCED

POTENTIAL AT PERIODIC POINTS

In this section we provide some examples illustrating the properties of
the factor map considered above.
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5.1. Ad Hoc Example

Define a class of factor maps by the following construction.

1. Let BN be a topological Markov chain with transition matrix
N: B × B Q {0, 1}, and let A be a set such that #A \ #B > 1.

2. To each b ¥ B we associate a non-empty subset Eb … A.

3. For each two-block bbŒ admissible in BN and for each a ¥ Eb,
choose a non-empty subset Da, bŒ … EbŒ.

A n-circuit in BN (corresponding to a circuit in the digraph defined
by N) is a BN-admissible block b0b1 · · · bn such that b0=bn, and such that
bi ] bj for all 0 [ i < j < n. Note that there is a finite number of n-circuits
in BN for a given n.

The subset Da, bŒ in item 3 has to be non-empty, but it is arbitrary
except for at least one two-block inside each circuit.

We have the following condition.

4. For each circuit b0b1 · · · bn in BN, choose a two-block bibi+1. The
choice in 3 has to be such that for each a ¥ Ebi

, Da, bi+1
:=Ebi+1

.

5. Define the transition matrix M: A × A Q {0, 1} such that

M(a, aŒ)=˛1 if a ¥ Eb, aŒ ¥ Da, bŒ and N(b, bŒ)=1,
0 otherwise.

The factor map p: A Q B such that p−1(b)=Eb for each b ¥ B has all
the desired properties.

For the class of examples constructed in this way, any Markov
measure in AM with support in the whole symbolic set, induces a Gibbsian
measure in the factor system Bp :=BN.

One concrete instance of this kind is the topological Markov chain
{1,..., 5}M whose digraph is given in Fig. 1.

Together with {1,..., 5}M, consider the factor map p :{1,..., 5} Q

{a, b, c}, such that p−1(a)={1, 5}, p−1(b)={2, 4}, and p−1(c)=3. The
factor system {a, b, c}p is described by the digraph drawn in Fig. 2.

Notice that one has only two periodic points with period [ 3, namely
(ab). and (ba)., and for any Markovian measure with support in
{1,..., 5}M, the corresponding matrices Mab and Mba are both > 0.

5.2. The Induced Potential Is Not of Finite Range Even when the

Original TMC Is a Full Shift

The purpose of this section is to see what happens when there are no
forbidden blocks in the original system, i.e., it is a full shift. It is obvious
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Figure 1.

that the factor system is also a full shift. It will turn out from the example
considered hereafter that the image measure of a Markov measure sup-
ported by an arbitrary full shift is always a BGM. We are rather interested
in the possibility that the induced potential be of finite range. Our example
shows that it is indeed possible but somewhat exceptional.

Let mf be a Markovian measure for the full shift {a, b, c, d}N, and
consider the mapping p :{a, b, c, d} Q {0, 1} such that

E0 :=p−1(0)={a, b} and E1 :=p−1(1)={c, d}.

This mapping defines a factor map p: {a, b, c, d}N
Q {0, 1}N.

The induced Gibbs measure has potential k :{0, 1}N
Q R, which is

completely determined by the 2 × 2 positive matrices M00, M01, M10, M11,
and by the 2 × 1 vectors m0 and m1.

Figure 2.
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Indeed, according to the Main theorem (whose hypothesis are trivially
satisfied !),

k(b)= lim
n Q .

log(1†Mb(0:1)xb(1:n))

=log(1†Mb(0:1)xb(1:.))

=log(1†Mb(0:1)Fb(1:k)(xb(k:.))), -k ¥ N.

Let us remind that for all 1 [ m < n,

xb(m:n) :=Fb(m:n)(m̂b(n))=Fb(m:m+1) p Fb(m+1:m+2) p · · · p Fb(n − 1:n)(m̂b(n)),

with m̂b(n) :=mb(n)/|mb(n) |1

FeeŒ: DeŒ Q De, such that FeeŒ(x)=
MeeŒx
|MeeŒ |1

.

In the case we treat now, all these transformations are pure contrac-
tions, hence the limit

xb(k:.) := lim
n Q .

Fb(k:n)(m̂b(n))

exists for all k \ 1. Notice also that the two simplices D0 and D1, are
equivalent. Because of this, the functions FeeŒ can be considered as self-
maps in the one-dimensional simplex

D :={x ¥ (0, 1) × (0, 1):x(0)+x(1)=1}.

For each e ¥ {0, 1}, the set of limit points

Fe :={xe(1:.): e ¥ {0, 1}N, e(1)=e}, (25)

can be thought as a subset of the fractal limit of the Iterated System of
Functions (D, {FeeŒ :eeŒ ¥ {0, 1} × {0, 1}}).

In general Fe is an uncountable set. For this it is enough that the fixed
points of the mappings F00 and F11 be different.

We are in the situation where the values of k can be obtained through
linear functionals on R2, acting on the fractal set F … D … R2. For each
couple eeŒ ¥ {0, 1} × {0, 1}, these functionals are defined by x W 1†MeeŒx.

Proposition 1. If the induced potential k :{0, 1}N is of finite range,
then at least one of the following conditions must hold.

Projection of Markov Measures May Be Gibbsian 1263



(1) The matrices M00 and M11 have the same positive eigenvector.

(2) One of the matrices M00, M01, M10, or M11, is of rank 1.

(3) The vector 1† of dimension 1 × 2 is a left eigenvector for each one
of the matrices M00,M01,M10, and M11.

Hence, if the Markov measure mf ¥ B({a, b, c, d}N) is such that, under
the factor map p: {a, b, c, d} Q {0, 1}, none of the hypotheses of the pre-
vious proposition holds, then the induced Gibbs measure nk ¥ B({0, 1}N)
cannot have a potential of finite range. The space of parameters defining
a Markov measure mf ¥ B({a, b, c, d}N) is the Cartesian product of 4
simplices of dimension 3 (the 4 columns of the probability transition
matrix). Conditions (1)–(3) of the previous proposition define a submani-
fold of dimension not greater that 9 inside that space of parameters:
1 dimension for condition (1), 4 dimensions for condition (2), and 4 dimen-
sions for condition (3). Hence, a Markov measure mf ¥ B({a, b, c, d}N)
generically induces a Gibbs measure whose potential cannot have finite
range.

5.3. The Induced Potential at Periodic Points

It is worth to notice that the limit (10) can be effectively computed on
periodic points.

Let b ¥ Bp a periodic point of period p \ 1. The set

Wb :={a ¥ AM: pa=b}

together with sp, define the full shift on Eb(0). Indeed, the preimage p−1(b)
of a periodic point b ¥ Perp(Bp), is a sp-invariant subset of AM. The system
(p−1(b), sp) is a TMC whose transition matrix is compatible with
Mb(0:p) :=<p − 1

i=0 Mb(i : i+1). By the hypothesis H2, Mb(0:p) is positive, and
hence the system (p−1(b), sp) is a full shift on Eb(0) :=p−1(b(0)).

The topological pressure PWb
(f; sp) of this system, with respect to the

potential f, is the logarithm of the maximal eigenvalue of the matrix Mb(0:p)

(as defined in (16)). Let us denote by Gb(0:p) and Db(0:p) the left and right
eigenvectors associated with r :=exp[PWb

(f; sp)]. They are chosen in order
that G†

b(0:p)Db(0:p)=1. Further set D̂b(0:p) :=Db(0:p)/|Db(0:p) |1.

Proposition 2. Let b ¥ Bp a periodic point of period p \ 1 such that
Mb(0:p) is primitive, which is true, in particular, when hypothesis H2 is
satisfied. Then

k(b)=PWb
(f; sp) − log(|Mb(1:p)D̂b(0:p) |1) . (26)
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Proposition 2 leads to the following approximation formula. For any
bŒ ¥ Bp and each n ¥ N let b be a periodic point of minimal period p(b, n) in
[bŒ(0:n)]. Note that p(b, n) Q . as n Q .. It follows from (24) that

|k(bŒ) − k(b)| [ C × hp(b, n),

using for k(b) formula (26).
Let us recall that one can get a large class of Gibbs measure as a

weakg limit, as p Q ., of measures concentrated on p-periodic orbits
obtained by counting p-periodic orbits weighted by the potential, see, e.g.,
ref. 9.

Another remarkable property of periodic orbits appears in Livsic’s
periodic points theorem (see ref. 18): periodic points determine completely
the cohomology class of a Hölder continuous potential.

5.4. Example of a Non-Gibbsian Induced Measure

In this section we show that hypothesis H2 is essential to get a well-
defined potential on the whole factor system. A concrete and simple
example is built such that at some point the induced potential is not
defined. More precisely, this means the sequence appearing in (17) does not
converge. Let us emphasize that this shows the subtle effect produced by
the presence of forbidden blocks in the original system. Remember that
without forbidden blocks one always gets a potential which is well-defined
everywhere (Section 5.2).

Consider the TMC {a, b, c, d, e, f}M defined by the digraph given in
Fig. 3.

The mapping p: {a, b, c, d, e, f} Q {0, 1} such that p−1(0)={a, b, c, d}
and p−1(1)={e, f} maps the TMC {a, b, c, d, e, f}M onto the full shift
{0, 1}N.

Figure 3.
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Supply p: {a, b, c, d, e, f} Q {0, 1} with the with the 1-step Markov
measure m, defined by the probability transition matrix

M=R 0 0 2c c 1 − 3c 0
0 0 c c 0 1 − 2c

1/4 1/4 0 0 1/2 0
1/4 1/4 0 0 0 1/2
1/2 0 1 − 3c 0 3c − 1/2 0

0 1/2 0 1 − c 0 2c − 1/2

S ,

with 1/4 < c < 1/3. Since M is double-stochastic, then the one-marginal is
the uniform vector (1/6) 1.

Suppose that the induced measure n=m p p−1 is a Gibbs measure
defined by the potential k: {0, 1} Q R. If this is the case, one must have
k(0.)=limn Q . log(1†M00x0.(1:n)), with

M00=R 0 0 2c c

0 0 c c

1/4 1/4 0 0
1/4 1/4 0 0

S :=R 0 A
B 0

S

and x0.(1:n)=(1†Mn − 1
00 1)−1 Mn − 1

00 1.
Since M00 is a irreducible matrix whose second eigenvalue is zero, the

Perron–Frobenius theory gives, for k \ 3,

M2k
00=R (AB)k 0

0 (BA)k
S=rk

AB
RDABD†

BA 0
0 DBAD†

AB

S

M2k+1
00 =R 0 (AB)kA

(BA)k B 0
S=rk

AB
R 0 DABD†

BAA
DBAD†

ABB 0
S ,

where we used the notation previously used for maximal eigenvalues and
associated eigenvectors (preceding subsection). Notice that in this case
rAB=rBA=5c/4, DAB=1

5 (32)† and DBA=(11)†. With this we obtain

1†M00x0(1:2k+1)=
5c+1

4
, 1†M00x0(1:2k+2)=

5c

5c+1
.

Since (5c+1)/4 ] 5c/(5c+1) for c ] 1/5, then k is not defined at the fixed
point 0..
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Figure 4.

5.5. The Converse to Lemma 6 Is False

For this consider the topological Markov chain AM, defined by the
digraph which is in Fig. 4.

The factor system defined by AM and the mapping p defined in Fig. 4
is the full shift ({0, 1}N, s). For this note that the full shift ({a, b}N, s) is a
subshift of AM, and that the factor map restricted to this subshift is a
conjugacy.

On the other hand, the submatrix M01 is not a row allowable matrix
since there is no symbol e ¥ E1( :=p−1(1)) such that M(c, e)=1. The same
is true for M10.

6. CONCLUDING REMARKS AND OPEN QUESTIONS

Some Related Works in Ergodic Theory. Some previous works (3, 11)

deal with the study of factor maps between TMC’s in the context of
ergodic theory and dynamical systems. Let us mention the work of
Walters, (22) where the concept of compensation function, which was first
considered by Boyle and Tuncel, (3) is used to characterize more general
factor maps that those considered in the present work. Walters takes espe-
cially advantage of ideas and results from the thermodynamic formalism of
equilibrium measures. Let us also quote the recent works (21) where the
concept of compensation functions is used to answer certain questions
related to measures maximizing some weighted entropy. We point out that
in most cases all these works study the behavior of Markov measures under
lifting while in the present work we were interested in projecting Markov
measures.

Infinite-To-One Factor Maps and Finite-To-One Ones. There are
two classes of factor maps between TMC’s. Finite-to-one maps preserve the
topological entropy whereas infinite-to-one maps decrease it strictly. (An
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infinite-to-one map is a map such that there is at least one point having an
uncountable number of preimages.) A simple combinatorial characteriza-
tion allows to determine whether a factor map is infinite-to-one: one has
to check that the map has a diamond. We refer the reader to ref. 10 and
Chap. 4 for full details. Hypothesis H2 in the Main theorem (Section 3)
implies that p is an infinite-to-one factor map. A necessary condition to
have an infinite-to-one factor map is that #A > #B. But this not sufficient
(see the nice example in ref. 10, p. 97).

When the Factor Map Is Not a Topological Markov Map. In
general a factor map maps a TMC to a strictly sofic subshift, see ref. 10.
BGM’s are in fact well-defined on sofic subshifts. (1) We conjecture that
‘‘nice’’ factor maps should also map Markov measures to BGM’s. We were
forced to consider a subclass of topological Markov factor maps, namely
full row allowable factor maps (hypothesis H1 in the Main theorem
(Section 3)). We believe that this is not a necessary condition but we are
not able to prove anything by using our present tools.

About Rational Probability Measures and Semi-Group Mea-

sures. In ref. 7, the authors introduce the concept of rational probability
measures which are characterized in terms of formal power series. In par-
ticular, they show that these measures are exactly the measures obtained by
the action of 1-block factor maps (alphabetic monoid morphisms in their
context) on 1-step Markov chains. Therefore the Main theorem gives some
sufficient conditions for a rational probability measure to be a BGM. The
same could be said for semi-group measures that were introduced in ref. 11.
Moreover the example of Section 5.4 shows that there are rational
probablity measures or semi-group measures that are not Gibbs measures.

Grouped Markov Chains. Our main result generalizes a result by
Harris (8) in the context of chains of infinite order (or chains with complete
connections). This author calls a grouped Markov chain what we call a
projected Markov measure and only considers full shifts, that is, there are
no forbidden blocks. Rephrased in his language, we can say that under our
hypothesis a grouped Markov shift is continuous with respect to its past
with an exponential continuity rate.

Equilibrium Measures with a Non-Hölder Potential. One can
relax the hypothesis of Hölder continuity of a potential function and still
have a unique equilibrium state satisfying property (2). This is the case
when the variation of the potential on cylinders is not exponential (as in
the Hölder case) but, for instance, summable. A glance at our proof shows
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that the Hölder continuity of the induced potential follows from the expo-
nential convergence in (10), see formula (19). This shows that by using the
projective distance we can only obtain a Hölder continuous induced
potential.

Weak Gibbs Measures and Hypothesis H2. The example in
Section 5.4 provides a simple example of the non-existence of the induced
potential at some point. This happens because there is the matrix M00 asso-
ciated to the fixed point 0. which is not strictly positive, in violation with
hypothesis H2 of the Main theorem. It may happen that if H2 is satisfied
for at least one periodic point the image measure n could be a BGM on a
subset of Bp of full measure, that is, the Bowen–Gibbs inequality (2) could
hold for n-almost all b ¥ Bp. This situation has been studied, see, e.g.,
refs. 13 and 23, and such a measure is referred to as a weak Gibbs measure.

7. PROOF OF SOME LEMMAS AND PROPOSITIONS

Proof of Lemma 4. Write b as the concatenation b :=
b(0:#B) b(#B+1:(#B+1)+#B) · · · . Inside each one of the factor blocks
b(k(#B+1):k(#B+1)+#B) there is at least one symbol appearing twice,
i.e., there are integers k(#B+1) [ m(k) < a(k) [ k(#B+1)+#B such that
b(m(k))=b(a(k)). Hence, the lemma is proved.

Proof of Lemma 5. From the hypothesis, for all b ¥ W and all
n ¥ N0 one gets

exp 1 − C
n

k=0
c(k)2 [

n[b(0:n)]
exp (;n

j=0 k(s j(b)))
[ exp 1 C

n

k=0
c(k)2 .

Since {c(n)}.

n=0 is summable, then the Bowen–Gibbs inequality (2)
holds with a constant K :=;.

n=0 c(n) and we are done.

Proof of Lemma 6. Define the transition matrix N: B × B Q {0, 1}
such that

N(b, bŒ)=˛1 if ,a, aŒM(a, aŒ)=1, p(a)=b and p(aŒ)=bŒ,
0 otherwise.

We shall prove that the factor subshift Bp and the TMC associated to
BN indeed coincide.
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If b ¥ Bp, then there exists a ¥ AM such that p(a)=b. In particular, for
each i ¥ N0 the block a(i, i+1) satisfies

M(a(i), a(i+1))=1 and p(a(i))=b(i)- i ¥ N0.

Thus, N(b(i), b(i+1))=1 for each i ¥ N0, and hence b ¥ BN.
On the other hand, if b ¥ BN, then for each i ¥ N0 there exists a block

aia
−

i such that

M(ai, a −

i)=1, p(ai)=b(i) and p(a −

i)=b(i+1).

In general there is no reason that a −

i=ai+1, but since Mb(i : i+1) is row
allowable (recall Definition 1), given ai and a −

i, there exists a'

i ¥ Eb(i+2) such
that M(a −

i, a'

i )=1. Then we can choose ai+1=a −

i and a −

i+1=a'

i . This
choice is such that aia

−

ia
'

i — aiai+1a −

i+1 is AM-admissible and p(aiai+1a −

i+1)=
b(i : i+2). Thus, starting with i=0, we can proceed by induction in order
to obtain a sequence a ¥ AM, such that p(a)=b and a(i)=ai for each
i ¥ N0. Therefore b ¥ Bp. This concludes the proof.

Proof of Proposition 1. Assume that the induced potential
k :{0, 1}N

Q R is of range k, for some k ¥ N. In that case, for all
e ¥ {0, 1}N,

exp(k(e))=1†M(0:1)Fe(1:k)(x), -x ¥ Fe(k),

with F as defined in (25).
For this we have the following three logical possibilities: (i) either

#Fe(k)=1; or (ii) #Fe(k) > 1, but Fe(1:k) maps all points in Fe(k) to the same
image; or (iii) #Fe(k) > 1, Fe(1:k) maps two different points in Fe(k) to two
different images, but the linear functional x W 1†Me(0:1)x maps those
different images to the same value.

If (i) holds, then the fixed points of the mappings F00 and F11, which
belong to Fe(k), have to coincide. This means that M00 and M11 have the
same positive eigenvector, and condition (1) in the statement follows.

If (ii) holds, then Me(1:k) is necessarily a rank one matrix, and for this
one of the matrices M00, M01, M10, or M11, has to be of rank one. In this
way condition (2) in the statement follows.

Finally, if (iii) holds, we need (1†Me(0:1))† to be orthogonal to the
simplex. In this case we have M†

e(0:1)1=a1. Since e(0:1) is arbitrary, con-
dition (1) follows. The proof is finished.
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Proof of Proposition 2. Since b is a periodic point of period p, (10)
becomes

k(b)= lim
n Q .

log 1 1†(Mb(0:p)) N
n
pM mb(0:n mod p)

1†Mb(1:p)(Mb(0:p)) N
n
pM− 1mb(0:n mod p)

2 .

To ease notation, let, for any b and j ¥ N, zb(0:j) :=Mb(0:j)mb(j). Now
apply Perron–Frobenius theorem (20) to get

k(b)= lim
n Q .

log 1 1†r N
n
pMDb(0:p)G

†
b(0:p)zb(0:n mod p)+O (l N

n
pM)

1†Mb(1:p)r
N

n
pM− 1Db(0:p)G

†
b(0:p)zb(0:n mod p)+O (l N

n
pM− 1)

2 ,

where l is any number in (|l2 |, r) (l2 is the eigenvalue of the next largest
modulus after r). Therefore

k(b)=log r+ lim
n Q .

log 1 |Db(0:p) |1+O ((l/r) N
n
pM)

|Mb(1:p)Db(0:p) |1+O ((l/r) N
n
pM− 1)

2 ,

and the proposition follows.
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